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Abstract—In this paper, we present a simple analytic method that can
be used to predict potential energy depletion in off-grid wireless backbone
network nodes serving mobile users. The instantaneous energy depletion of
the batteries of the network nodes is determined by random energy arrivals
and departures and modeled as a G/G/1 queue. To evaluate the online
energy depletion probability (EDP), an integral-free asymptotic approach
is typically used by assuming that the prediction horizon approaches
infinity. However, in many practical cases, the time required by user
connections can be rather short. This indicates the need for proactive re-
source management decisions over finite horizons so that the transmission
opportunities with limited energy and time horizons are not wasted. Using
Hölder’s inequality, we obtain a novel finite-horizon upper bound for the
EDP, and the result is compared with the infinite-horizon method. The
accuracy of the proposed bound, which is addressed both analytically and
numerically, proves to be better for shorter prediction horizons. The finite-
and infinite-horizon methods are then applied for an energy provisioning
admission control (EP-AC) framework using off-grid backbone network
nodes. The key observation of this paper is that the proposed finite-horizon
prediction approach admits significantly more users to the network when
the connection times are relatively short, while retaining an integral-free
closed-form structure suitable for the online evaluation of the EDP.

Index Terms—Energy depletion, energy harvesting, queueing theory,
renewable energy, resource management.

I. INTRODUCTION

Resource management methods, such as cooperative routing and
connection admission control, have a central role in improving the
reliability and energy efficiency of wireless communication networks,
[1], [2]. Smart proactive resource management methods become of
crucial importance in a rather new class of green wireless networks,
where selected on-grid backbone nodes are replaced with off-grid
network nodes, which harness local renewable energy to charge their
batteries [3]. The interest of the mobile network industry in using
renewable energy has recently increased particularly for dense small
cells such as femtocells and local area network infrastructure. Under
these scenarios, the main expected benefits include easier and faster
small-cell network deployments without the need to install on-grid
energy and data wires, as well as reduced operational on-grid energy
costs and carbon emissions [3].
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The dynamic characteristics of the local renewable energy supply
and energy demand, however, introduce new challenges in the net-
work design. In essence, energy sustainability, i.e., the prevention of
dropping users due to instantaneous energy depletions of the involved
energy harvesting nodes, is emphasized. This is a distinctive feature,
in comparison with on-grid network nodes, where energy availability
is not limited. The energy sustainability problem has been studied for
different energy harvesting wireless applications with small cell sizes,
including sensor networks [4], [5], local area networks [6], and cellular
networks [7], [8]. In these works, it is shown that the provisioned net-
work resource management methods, which take into account potential
energy depletion, typically outperform the methods that ignore them.

Due to various stochastic phenomena in mobile networks, the
energy sustainability of the network nodes cannot be fully guaranteed.
A more practical approach is based on energy provisioning where
the energy sustainability is predicted with a given energy depletion
probability (EDP). Diffusion approximation, which is based on some
past fundamental work [9], [10], has recently been applied to analyze
the transient effects of various stochastic energy queue models in
network nodes [6]–[8]. Our contribution extends on the work of
[6] and the application of the diffusion approximation approach to
G/G/1 energy queues for enabling fine-grained energy provisioning
admission control (EP-AC).

In [6], the effect of the prediction horizon on the EDP is incor-
porated through the integration of the probability density function of
the first-passage time in which the energy buffer becomes empty. This
integral form of the EDP cannot be adopted easily in practice for online
prediction in adaptive resource management tasks. The asymptotic
upper bound presented in [6] is the first attempt to overcome this
drawback in energy-sustainable resource management. Nevertheless,
this bound relies on infinite prediction horizon and does not give any
insight on how a finite prediction horizon affects the EDP. However,
many popular mobile-user data services, such as short messages,
e-mails, and short video clips, require finite and relatively short times
for which the users are expected to be using the connection [11].
This indicates the need for proactive resource management decisions
over finite horizons so that the transmission opportunities with limited
energy and time horizons are not wasted. To the best of our knowledge,
the advantage of using finite prediction horizons rather than an infinite
horizon with G/G/1 energy queue models in the EP-AC concept has
yet to be quantified, which has inspired the work for this paper.

In this paper, we first obtain a simple upper bound for the EDP
that incorporates the effect of finite prediction horizons in the G/G/1
energy queue model. Similar to [12], in this paper, we aim at trad-
ing the accuracy of an integral-based approach for lower evaluation
complexity. The accuracy of the bound is addressed both analytically
and numerically. The finite-horizon method is then applied for the
EP-AC framework using off-grid backbone network nodes. In such
energy-limited systems, it is important to minimize the connection
blocking probability (CBP) for a given energy depletion risk. The key
observation of this paper is that the proposed finite-horizon prediction
method, when compared with the infinite-horizon method of [6],
admits significantly more users to the network when the connection
times are relatively short, while retaining an integral-free structure
suitable for online evaluation. The considered EP-AC approach can
be readily combined with the resource management that takes into
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Fig. 1. Wireless mesh backbone network with off-grid MBNs.

account other network restrictions, such as limited bandwidths. Due to
space limitations, these aspects are not studied in detail in this paper;
see [1].

The remainder of this paper is organized as follows. The target
system model is presented in Section II. The EDP prediction and
resource management methods are provided in Section III, followed by
illustrative performance results in Section IV. Finally, our conclusions
are given in Section V.

II. SYSTEM MODEL

A. Overview of the EP-AC Concept

We consider a wireless mesh network topology, which consists of
static mesh backbone nodes (MBNs), each serving a number of mobile
users (see Fig. 1). In general, MBNs can be access points of a wireless
local area network or small base stations of a femtocell network [1],
[6], [7]. It is assumed that the MBNs are off-grid nodes charged by
a local renewable energy source that can harvest energy provided by
sun, wind, etc. To enable a cost-efficient high-density mesh network
deployment, only a subset of the nodes acts as an Internet gateway
node (GWN) in a given area [1]. The MBNs manage a local network
and act as a mesh router that forwards the data requested by mobile
users of other MBNs to extend the limited range of the GWN. In the
applied EP-AC model, each MBN is characterized by a corresponding
node-level EDP, set by the prevailing energy harvesting and energy-
consuming traffic conditions over a selected finite time horizon. The
GWN then admits a new user to the network only if the EDPs of the
MBNs of the selected relay route are below a set target threshold level,
which is used to compromise between user blockings and droppings
due to energy depletions. The route selection and admission criteria
will be detailed in Section III-D.

B. Stochastic Energy Model for MBNs

The EP-AC approach is affected by the stochastic energy model of
the involved MBNs. The dynamic energy buffer of each MBN is rep-
resented as an energy queueing system with discrete arrival and depar-
ture times of a single energy charge unit over time interval (t0, t0 + t),
where t0 is the present time, and t0 + t denotes the future time instant.
Regarding the energy buffer state of the ith MBN, let bi = qi(t0)
denote the initial number of energy units at time t0, xi(t) denote the
cumulative number of energy unit arrivals over time interval (t0, t0 +
t), and yi(t) denote the cumulative number of energy unit departures

over time interval (t0, t0 + t) with bi > 0 and xi(t0) = yi(t0) = 0.
Then, the number of energy units in the energy buffer of the ith MBN
at time t0 + t can be represented as follows (cf. [6] and [8]):

qi(t0 + t) = min {max {bi + xi(t0 + t)− yi(t0 + t), 0} , Bi} (1)

where Bi ≥ bi is the maximum energy level of the ith energy buffer.
We assume that 0 ≤ t ≤ S, where S > 0 denotes the selected finite
prediction horizon in time. Following the normalized model of [6], [8],
the energy charge level is represented by the number of energy units
where one energy unit can take any value in joules. Correspondingly,
the prediction horizon time S is represented in terms of a number of
time units, where one time unit can take any value in seconds. For
analytic tractability, in the theoretical analysis, we assume that the
potential energy buffer overflows do not affect the EDP. As will be
demonstrated in Section IV, this is a reasonable assumption for static
MBNs equipped with energy buffers having a relatively large capacity.
An energy depletion is declared at the ith node if qi(t) becomes zero.

In general, there are a number of alternative system-specific sources
that affect the stochastic behavior of energy arrivals and departures [1],
[3], [6]–[8]. Modeling of the energy-dependent components individu-
ally for a specific system is beyond the scope of this paper. Without loss
of generality, we apply a customary G/G/1 queue model approach from
[6]–[8]. In this framework, the involved distributions of the energy in-
terarrival and interdeparture times, associated with xi(t) and yi(t), are
unknown to the MBNs, except their respective means mxi

and myi ,
and standard deviations σxi

and σyi . For analytic tractability, we adopt
a customary assumption that the interarrival and interdeparture times
are independent, as was done in [6]–[8]. The extension to a nonsta-
tionary system with slowly time-varying moments and online moment
estimation is possible because a nonstationary G/G/1 system can be de-
composed into a series of stationary G/G/1 systems, as shown in [10].

III. PROPOSED ENERGY DEPLETION PREDICTION METHOD

Here, after providing the relevant theoretical background, we
present a novel expression for the EDP that incorporates the finite
prediction horizons in the G/G/1 energy buffer model. The accuracy
of the proposed method is then addressed analytically, and finally, the
method is applied for the EP-AC framework.

A. Theoretical Background

We apply the well-known diffusion approximation approach used,
e.g., in [6]–[10], as the basis for the analysis. We shortly review the
main assumptions leading to the diffusion approximation model (for
a more detailed treatment, see [6], [9], and [10] and the references
therein). The distributions of the energy interarrival and interdeparture
times can be general and do not need to be specified. Yet, the model
does require the knowledge of their first- and second-order statistical
moments. We drop the node index i because the calculation of the
EDP is essentially the same for all the MBNs. The random energy
level q(t) is modeled as the continuous-time Brownian motion with
an absorbing barrier at q(t) = 0. Specifically, the density of the
incremental change of energy buffer state Δq(t) = q(t+Δ)− q(t)
between time t and time t+Δ is assumed to converge to the normal
distribution as Δq(t) ≈ βΔ+ z(t)

√
αΔ, where z(t) is the standard

white Gaussian process, β = m−1
x −m−1

y is the drift coefficient,
and α = σ2

xm
−3
x + σ2

ym
−3
y is called the diffusion coefficient [6].

Obviously, the more independent events that occur during the observa-
tion time window, the better the convergence will be. This is justified
by the central limit theorem, which introduces the requirement that the
interarrival and interdeparture times are independent and identically
distributed random variables.
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Without loss of generality, let t0 = 0, α > 0, and β ∈ R, where R

denotes the set of real numbers. Using the given diffusion approach,
the EDP is defined as P = Pr{φ(t) < S}, where φ(t) = inf{t :
q(t) = 0|q(0) = b} denotes the first-passage time from q(0) = b to
q(t) = 0, Pr{·} denotes the probability, and inf{·} is the infimum
function. The EDP is obtained from the following integration [6]:

P =

S∫
0

b√
2παt3

exp

[
− (βt+ b)2

2αt

]
dt. (2)

For a sufficiently large value of S, (2) can be approximated by [6]

P ≤ lim
S→∞

P = exp

(
− b|β|+ bβ

α

)
. (3)

B. New Upper Bound for the EDP

The upper bound (3) is interesting because it is simple enough to
be applied for practical systems, which require online performance
prediction capability. However, (3) fails to approximate the EDP
accurately unless S is sufficiently large. Next, we will derive a new
upper bound to (2) that can incorporate S, while retaining a low-
complexity integral-free expression.

Theorem 1: If β �= 0, then for a given prediction horizon S, the EDP
(2) is upper bounded by the following:

P ≤ b√
2πα

exp

(
−2βbS + b2

2αS

)(
n∑

k=0

n!

k!

S−k

μn−k+1

) 1
p

×
{

2α(p− 1)
pβ2

[
1 − exp

(
− pβ2S

2α(p− 1)

)]} p−1
p

(4)

where n = 0, 1, 2, . . ., p = (2n+ 4)/3, and μ = pb2/(2α).
Proof: We first observe that integral (2) can be rewritten as

P = w
∫ S

0
f(t)g(t)dt, where f(t) = t−3/2 exp(−b2/(2αt)), g(t) =

exp(−β2t/(2α)), and w = (b/
√

2πα) exp(−βb/α). This form en-
ables the use of Hölder’s inequality [13, Eq. 12.312, pp. 1131]
as P ≤ w(

∫ S

0
|f(t)|pdt)1/p(

∫ S

0
|g(t)|p/(p−1)dt)(p−1)/p, where p >

1 is the parameter used to manipulate the tightness of Hölder’s in-
equality. After the change of variables z = t−1 and μ = pb2/(2α),
and using [13, Eq. 3.351.2, pp. 357], we obtain

∫ S

0
|f(t)|pdt =

exp(−pb2/(2αS))
∑n

k=0(n!/k!) (S−k/μn−k+1) where n = (3p−
4)/2 is necessarily a nonnegative integer. If β �= 0, then using
[13, Eq. 3.351.1, pp. 357], we obtain

∫ S

0
|g(t)|p/(p−1)dt=2α(p−

1)/(pβ2)[1 − exp(−pβ2S/(2α(p− 1)))]. Finally, (4) is obtained by
substituting the given expressions into Hölder’s inequality. �

Corollary 1: If β = 0, then for a given prediction horizon S, the
EDP in (2) is upper bounded by the following:

P ≤ bS
p−1
p

√
2πα

exp

(
− b2

2αS

)(
n∑

k=0

n!

k!

S−k

μn−k+1

) 1
p

. (5)

Proof: If β = 0, then
∫ S

0
|g(t)|p/(p−1)dt = S, which leads to

(5) after rearrangement of the terms. �
Corollary 2: If p = 2, then for a given prediction horizon S, (4) and

(5) reduce to

P ≤ ω(β) exp

(
−2βbS + b2

2αS

)
(6)

where ω(β) =
√

α(b2 + αS)/(2πb2β2S)[1 − exp(−β2S/α)] for
β �= 0, and ω(0) =

√
(b2 + αS)/(2πb2) for β = 0.

Fig. 2. Numerical illustration of the approximation characteristics for differ-
ent EDP evaluation methods.

Proof: The proof is straightforward by using (4) and (5) and
rearrangement of the terms. �

The EDP from (2) and its upper bound (4) are shown in the left-hand
side of Fig. 2. For comparison purposes, the integral (2) is evaluated
using N -point extended trapezoidal numerical integration method
[14], where N denotes the required number of integrand evaluations
in (2) with different time intervals. The results are shown for β = 0.2,
α = 20, S = 1000, and the three lowest values of p. In essence, it is
difficult to ensure that a low value of N , enabling a low-complexity
solution, is not seriously underestimating the EDP due to the irregular-
ity of the integrand in (2). We remark that underestimation of the EDP
is much more harmful for the EP-AC concept than overestimation of
the EDP because the necessary condition for the connection admission
is to ensure that the EDP is below a target threshold. Obviously, any
underestimation of the EDP from (2) is avoided by using the upper
bound (6). Furthermore, we observe from (6) and the left-hand side of
Fig. 2 that the calculation of relatively complicated high-order roots in
(4) can be avoided by selecting the value p = 2 without significantly
affecting the accuracy. Therefore, we next focus on the approxi-
mation error of (6), which is applied for the EP-AC framework in
Sections III-D and IV.

C. Analytic Assessment of Approximation Error Characteristics

Let Uinf ≥ P denote the infinite-horizon bound obtained from (3)
and Ufin ≥ P denote the finite-horizon bound obtained from (6).
Consequently, the corresponding nonnegative approximation errors
are εinf = Uinf − P and εfin = Ufin − P . It is easy to show that
εinf → 0, for all β, α, b, when S approaches infinity and εinf →
exp(−(b|β|+ bβ)/α) when S approaches zero.

Theorem 2: The approximation error of the finite-horizon bound is
as follows:

εfin ≤ Ufin −
√

max

{
0,U2

fin − b2M2
1

6παS
exp

(
−2bβ

α

)}
(7)

where M1 = exp(−b2/(2αS)) for S ≤ b2/(3α), and M1 =√
27S3α3/b6 exp(−3/2) for S > b2/(3α).

Proof: Rewrite integral (2) as P=w/
√
S

∫ 1

0
f(z)g(z)dz, where

f(z) = z−3/2 exp(−b2/(2αSz)), and g(z) = exp(−β2Sz/(2α)).
Using Ozeki’s inequality [15, Eq. 4.2] and the identity
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Fig. 3. Pseudocode for the EP-AC procedure in a mesh backbone network using off-grid nodes.

U2
fin −P2 = − ε2fin + 2 Ufinεfin, we obtain the quadratic expression

− ε2fin + 2Ufinεfin − w2/(3S)(M1M2 − m1m2)
2 ≤ 0, where

0≤m1≤f(z)≤M1, and 0 ≤ m2 ≤ g(z) ≤ M2. The function f(z)
is monotonically increasing for z < z∗ and monotonically decreasing
for z>z∗ where z∗=b2/(3Sα) is the point in which f(z) achieves
its global maximum. Using l’Hôpital’s rule, we obtain m1 =
limz→0 f(z)=0, regardless of the value of S. On the other hand, if
S>b2/(3α), then z∗<1 and M1=f(z∗). Otherwise, if S≤b2/(3α),
then z∗ ≥ 1 and M1 = f(1). It can readily be shown that
m2 = exp(−β2S/(2α)) and M2 = 1, which finally lead to (7) after
solving the above quadratic error equation for the real solutions. �

Corollary 3: The approximation error εfin → 0 for all β, α, b, when
S approaches zero.

Proof: Using (6) and (7), we first obtain limS→0+ Ufin =
(1/

√
2π) exp(−βb/α) limS→0+ exp(−b2/(2αS)) = 0. Further-

more, since limS→0+ b2M2
1 /(αS)= limS→0+ exp(−b2/(αS))= 0,

we immediately obtain limS→0+ εfin = 0 after substituting the two
limits into (7). �

Based on the above analytic characteristics of εinf and εfin, Ufin

clearly complements Uinf by improving the accuracy for shorter pre-
diction horizons. Since both Ufin and Uinf are upper bounds of P ,
the smaller bound gives a smaller approximation error. This imme-
diately leads to a composite bound P ≤ min{Ufin,Uinf} whose error
min{εfin, εinf} → 0 when S approaches either to zero or infinity. We
remark that the complexity of Ufin could be further reduced by setting
ω(β) = 1 ∀β, α, b, S at the cost of affecting the accuracy that is pro-
portional to 1 − ω(β) with ω(β) < 0. As a result, Ufin would reduce
to Ũfin = exp(−(2βbS + b2)/(2αS)), which can also be deduced
in the context of evaluating video interruption probability [11]. The
given observations of the characteristics of the approximation errors
are numerically illustrated with β = 0.2, α = 20, and b = 300 on the
right-hand side of Fig. 2.

D. Application to the EP-AC Framework

We now apply the proposed upper bound (6) to the EP-AC scenario
described in Section II. Consider a jth (j ∈ (1, J)) possible route
between the destination MBN, from which a new randomly arriving
user is requesting a data service, and the closest GWN via Lj hops over
relay MBNs. The random state of the network, which determines the

admission decision, is solely defined by the predicted EDPs Pi,j for
the given set (S, bi,j , βi,j , αi,j). The prediction horizon S is defined
as the connection time that the users expect to be using the data
services via the MBNs. The subindex (·)i,j denotes the ith MBN
in the jth candidate route, where the subindex j is dropped if not
necessary for the context. The EP-AC method first selects a route jmin

with the lowest P̆j , where P̆j = maxi(Pi,j). To avoid connection
droppings due to potential energy depletion of the involved MBNs
during a finite S, the admission is granted by the GWN if P̆jmin

is below a given threshold P0, i.e., if Pi,jmin
≤ P0 ∀ i ∈ (1, Ljmin

).
Otherwise, the connection request is blocked, affecting the CBP that is
defined as Pr(P̆jmin

> P0). The estimation of the MBN-dependent
means and standard deviations of energy arrivals and departures,
required to calculate Pi,j , can be performed via the standard sample
moment estimation methods [16]. The detailed design of the required
handshaking and control signaling, which does not affect the results
of Section IV, is not presented due to space limitations. The resulting
EP-AC procedure is presented in Fig. 3.

IV. PERFORMANCE RESULTS

Here, the EP-AC protocol from Section III is applied for deciding
whether a new arriving user can be admitted without violating the
EDP-based admission decision rule calculated either via the finite-
horizon or infinite-horizon method. The main goal is to demonstrate
the benefits from inclusion of the finite time horizons to the EP-AC
concept in a selected mesh backbone network scenario.

A. Simulation Setup and Used Energy Profiles for MBNs

Following [6], the EP-AC model is captured by the stochastic energy
harvesting and consumption processes of the MBNs, using the G/G/1
model from Section II. We evaluate a mesh backbone network with
one GWN and five partially connected MBNs, as shown in Fig. 1.
For testing purposes, we assume that the energy interarrival times
associated with xi(t) follow a discrete probability mass function
(pmf), as was done in [6]. Specifically, we assume a two-state energy
harvesting source representing a high-energy arrival state (e.g., direct
sunlight or turbulent wind) and a low-energy arrival state (e.g., indirect
sunlight or light wind), selected with the given pmf. To harvest a
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single energy unit in the ith MBN, the low and high harvesting states
are assumed to require one time unit with probability of υi and a
fraction of the time unit equivalent to 0.1 with probability of 1− υi,
respectively. Following [6], the energy consumption process yi(t) is
characterized by converting the random traffic arrivals into random en-
ergy consumption events. Each random traffic event is set to consume
one energy unit. We assume that the interdeparture times of energy
units follow the Weibull distribution, which is associated with the scale
θi and shape ηi parameters, representing the prevailing heterogeneous
energy demands of each MBN. The relationship between (υi, θi, ηi)
and (mxi

, σxi
,myi , σyi) to determine (βi, αi) is not presented due to

space limitations, but the result can readily be found using the known
characteristics of the pmf and Weibull distributions [16].

In the following examples, we examine the effect of the known
statistical parameters of random energy arrival and consumption
processes for given finite connection times S and initial energy levels
bi. Our objective is twofold.

First, in Section IV-B, the characteristics of different EDP eval-
uation methods are compared in the defined provisioned admission
control task. We examine the EDP of two different node types in-
dividually, and their statistical parameters are fixed as follows. For
the node i = 1, we set υ1 = 0.6, θ1 = 0.73, and η1 = 2.00, leading
to β1 = 0.018 and α1 = 1.16. For the node i = 2, we set υ2 = 0.3,
θ2 = 0.36, and η2 = 1.00, leading to β2 = −0.10 and α2 = 6.16.

Second, in Section IV-C, we apply the proposed EDP method to
the EP-AC by including the whole network with six nodes and simu-
lating the resulting CBP, i.e., Pr(P̆jmin

> P0), which is analytically
unknown for randomly changing statistical parameters. The purpose
is to demonstrate how the proposed finite-horizon prediction method,
when compared with the infinite-horizon one, can reduce the CBP of
the EP-AC approach while keeping the target P0. Our emphasis is
on demonstrating the effect of different proportions of asymptotically
underresourced (βi < 0) and overresourced (βi > 0) MBNs. To ob-
tain a desired range of βi in the network, the statistical parameters
(υi, θi, ηi) of each MBN and admission trial are randomly selected
from the uniform distribution with the given limits. The condition
−m−1

yi
≤ βi ≤ m−1

xi
ensures that mxi

and myi are nonnegative. The
simulation results are obtained using 105 experiments.

B. EDP Evaluation Comparison to Provision Admission Control

The finite- and infinite-horizon EDP evaluation methods are used
in Fig. 4 for the two MBNs with i ∈ (1, 2), b1 = 100, and b2 = 80,
and different energy profiles, as defined in Section IV-A. Unlike the
infinite-horizon bound, the proposed bound (6) is able to follow (2)
quite closely. We notice that the bound (6) is not uniformly better
than the infinite-horizon bound, slightly degrading the asymptotic
convergence in comparison with the infinite-horizon method (3).
Further improvements may hence be obtained by using a compos-
ite approach in which (3) and (6) are used jointly, as discussed
in Section III-C.

In Fig. 5, the purpose is to illustrate how the assumptions on infinite
energy buffer size and infinite prediction horizon affect the relative
accuracy of evaluating the EDP with S = 100 and S = 1000 for the
nodes i = 1 and i = 2, respectively. The approximation error, resulting
from assuming infinite buffer size, is the largest when the buffer is full.
However, the error diminishes as the energy buffer size gets larger.
This suggests that, for large energy buffer sizes, the error resulting
from assuming infinite buffer size is relatively small. Therefore, since
it is difficult to encounter both effects analytically, it is more important
to include the effect of a finite prediction horizon rather than a finite
buffer size.

Fig. 4. Comparison of the EDP evaluation methods to predict energy depletion
with two different MBNs for a given connection time S and infinite energy
buffer size.

Fig. 5. Effect of the finite energy buffer size Bi on EDP evaluation accuracy
with two different MBNs for a given initial energy level bi ≤ Bi. The markers
represent the results using the Monte Carlo method for different finite energy
buffer sizes.

C. CBP of Finite- and Infinite-Horizon EP-AC

Next, we illustrate the CBP when the EP-AC is based on a known
connection time S (finite horizon) and when the finite connection
time is not used (infinite horizon). In the former case, the EDP is
calculated using (6), whereas in the latter case, the EDP is calculated
with (3). In Figs. 6 and 7, the CBP is plotted as a function of S
and bi using P0 = 0.05. It is seen that the shorter the connection
time or larger the initial energy level, the lower the probability that
the energy will be depleted and, therefore, the lower the CBP. When
the connection time is relatively limited, the proposed finite-horizon
admission control method is more likely to admit users to the network
than the infinite-horizon method, while still keeping the probability
of an energy depletion below P0 at each involved MBN. Since the
infinite-horizon method is incapable of recognizing the transmission
opportunities for βi ≤ 0, one observes a significantly higher CBP
for the infinite-horizon method when asymptotically underresourced
nodes are dominating the network.
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Fig. 6. Simulated CBP with infinite- and finite-horizon EP-AC for a given
connection time S with different proportions of asymptotically underresourced
and overresourced MBNs (bi = 200).

Fig. 7. Simulated CBP with infinite- and finite-horizon EP-AC for a given ini-
tial energy level bi with different proportions of asymptotically underresourced
and overresourced MBNs (S = 500).

V. CONCLUSION

In this paper, we have presented a novel low-complexity finite-
horizon EDP method and its application to an EP-AC framework. The
merits of the proposed finite-horizon EP-AC approach, when com-
pared with the infinite-horizon one, can be seen from its capability to
admit significantly more users to join the network when the connection
times are relatively short, while retaining an integral-free structure
suitable for online evaluation. The reason behind the improvement is
that the transmission opportunities with limited energy and time hori-
zons are not wasted, most notably for asymptotically underresourced
nodes. The proposed upper bound leaves a residual approximation
error that approaches zero as the prediction horizon tends to zero.
In case a wide range of prediction horizons must be supported, a
combination of the finite- and infinite-horizon methods can be used
to further reduce the approximation error. In many practical cases, one
is not necessarily interested in knowing the exact EDP but rather in

knowing that the maximum EDP is below some target value. We have
proven that the proposed approximation method has an upper bound
characteristic for all possible parameter values affecting the EDP,
making it an adequate choice for practical usage. We expect that other
bounds with different tradeoffs between accuracy and computational
complexity could still be found. This, as well as the combination of the
EP-AC approach with the resource management considering limited
bandwidths, can pose interesting opportunities for future work.
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